Product Details:
Quantity Per Pack | 1000 |
Size | all |
Packaging Type | Packet |
State | Solid |
Shape | all |
Packaging Size | as u wish |
Grade | aaaa |
Machine Cut Round | yes |
Design | all |
Weight | approximately |
Product Type | good |
Brand | dazzle |
Color | Other |
Country of Origin | Made in India |
Product Details:
Minimum Order Quantity | 1000 Piece |
Size | 1 mm to 15 mm |
Grade | aaaa |
Technique | synthetic |
Treated | yes |
Weight | as u wish |
Brand | dazzle |
Packaging Type | all |
Carat | 1 to 100 |
Usage/Application | jewellery |
Pack Quantity | as u wish |
Heated | yes |
Packaging Size | 1000 |
State | solid |
Finish | full |
Is It Heated | Heated |
Color Grade | all |
Country of Origin | Made in India |
Synthetic diamond (also referred to as laboratory-grown diamond, laboratory-created diamond, or cultured diamond) is a diamond made of the same material as natural diamonds pure carbon, crystallized in an isotropic 3D form.[1]
Synthetic diamond are different from natural diamond created by geological processes and imitation diamond made of non-diamond material. Numerous claims of diamond synthesis were documented between 1879 and 1928; most of those attempts were carefully analyzed but none were confirmed. In the 1940s, systematic research began in the United States, Sweden and the Soviet Union to grow diamonds using CVD diamond (chemical vapor deposition) and HPHT diamond (high-pressure high-temperature) processes. The first reproducible synthesis was reported around 1955. Those two processes still dominate the production of synthetic diamond. A third method, known as detonation synthesis, entered the diamond market in the late 1990s. In this process, nanometer-sized diamond grains are created in a detonation of carbon-containing explosives. A fourth method, treating graphite with high-power ultrasound, has been demonstrated in the laboratory, but currently has no commercial application.
The properties of synthetic diamond depend on the details of the manufacturing processes; however, some synthetic diamonds (whether formed by HPHT or CVD) have properties such as hardness, thermal conductivity and electron mobility that are superior to those of most naturally formed diamonds. Synthetic diamond is widely used in abrasives, in cutting and polishing tools and in heat sinks. Electronic applications of synthetic diamond are being developed, including high-power switches at power stations, high-frequency field-effect transistors and light-emitting diodes. Synthetic diamond detectors of ultraviolet (UV) light or high-energy particles are used at high-energy research facilities and are available commercially. Because of its unique combination of thermal and chemical stability, low thermal expansion and high optical transparency in a wide spectral range, synthetic diamond is becoming the most popular material for optical windows in high-power CO2 lasers and gyrotrons. It is estimated that 98% of industrial grade diamond demand is supplied with synthetic diamonds.[2]
In the United States, the Federal Trade Commission has indicated that the terms laboratory-grown, laboratory-created, and [manufacturer-name]-created "would more clearly communicate the nature of the stone".[1] Both CVD and HPHT diamonds can be cut into gems and various colors can be produced: clear white, yellow, brown, blue, green and orange. The advent of synthetic gems on the market created major concerns in the diamond trading business, as a result of which special spectroscopic devices and techniques have been developed to distinguish synthetic and natural diamonds.
Additional Information:
Product Details:
Minimum Order Quantity | 1000 Piece |
Quantity Per Pack | 1000 |
Size | 1 mm to 15 mm |
Grade | aaaaa |
Technique | synthetic |
Treated | yes |
Weight | as u wish |
Color | all |
Brand | a n gems |
Shape | all |
Material | synthetic |
Packaging Type | all |
Usage/Application | jewewllery |
Pack Quantity | full |
Heated | yes |
Packaging Size | all |
Country of Origin | Made in India |
Synthetic diamond (also referred to as laboratory-grown diamond, laboratory-created diamond, or cultured diamond) is a diamond made of the same material as natural diamonds pure carbon, crystallized in an isotropic 3D form.[1]
Synthetic diamond are different from natural diamond created by geological processes and imitation diamond made of non-diamond material. Numerous claims of diamond synthesis were documented between 1879 and 1928; most of those attempts were carefully analyzed but none were confirmed. In the 1940s, systematic research began in the United States, Sweden and the Soviet Union to grow diamonds using CVD diamond (chemical vapor deposition) and HPHT diamond (high-pressure high-temperature) processes. The first reproducible synthesis was reported around 1955. Those two processes still dominate the production of synthetic diamond. A third method, known as detonation synthesis, entered the diamond market in the late 1990s. In this process, nanometer-sized diamond grains are created in a detonation of carbon-containing explosives. A fourth method, treating graphite with high-power ultrasound, has been demonstrated in the laboratory, but currently has no commercial application.
The properties of synthetic diamond depend on the details of the manufacturing processes; however, some synthetic diamonds (whether formed by HPHT or CVD) have properties such as hardness, thermal conductivity and electron mobility that are superior to those of most naturally formed diamonds. Synthetic diamond is widely used in abrasives, in cutting and polishing tools and in heat sinks. Electronic applications of synthetic diamond are being developed, including high-power switches at power stations, high-frequency field-effect transistors and light-emitting diodes. Synthetic diamond detectors of ultraviolet (UV) light or high-energy particles are used at high-energy research facilities and are available commercially. Because of its unique combination of thermal and chemical stability, low thermal expansion and high optical transparency in a wide spectral range, synthetic diamond is becoming the most popular material for optical windows in high-power CO2 lasers and gyrotrons. It is estimated that 98% of industrial grade diamond demand is supplied with synthetic diamonds.[2]
In the United States, the Federal Trade Commission has indicated that the terms laboratory-grown, laboratory-created, and [manufacturer-name]-created "would more clearly communicate the nature of the stone".[1] Both CVD and HPHT diamonds can be cut into gems and various colors can be produced: clear white, yellow, brown, blue, green and orange. The advent of synthetic gems on the market created major concerns in the diamond trading business, as a result of which special spectroscopic devices and techniques have been developed to distinguish synthetic and natural diamonds.
Additional Information:
Product Details:
Minimum Order Quantity | 1000 Piece |
Size | 1mm to 10mm |
Grade | synthetic |
Technique | synthetic |
Treated | yes |
Weight | all |
Brand | an gems |
Packaging Type | all |
Usage/Application | jewellery |
Country of Origin | Made in India |
Synthetic diamond (also referred to as laboratory-grown diamond, laboratory-created diamond, or cultured diamond) is a diamond made of the same material as natural diamonds pure carbon, crystallized in an isotropic 3D form.[1]
Synthetic diamond are different from natural diamond created by geological processes and imitation diamond made of non-diamond material. Numerous claims of diamond synthesis were documented between 1879 and 1928; most of those attempts were carefully analyzed but none were confirmed. In the 1940s, systematic research began in the United States, Sweden and the Soviet Union to grow diamonds using CVD diamond (chemical vapor deposition) and HPHT diamond (high-pressure high-temperature) processes. The first reproducible synthesis was reported around 1955. Those two processes still dominate the production of synthetic diamond. A third method, known as detonation synthesis, entered the diamond market in the late 1990s. In this process, nanometer-sized diamond grains are created in a detonation of carbon-containing explosives. A fourth method, treating graphite with high-power ultrasound, has been demonstrated in the laboratory, but currently has no commercial application.
The properties of synthetic diamond depend on the details of the manufacturing processes; however, some synthetic diamonds (whether formed by HPHT or CVD) have properties such as hardness, thermal conductivity and electron mobility that are superior to those of most naturally formed diamonds. Synthetic diamond is widely used in abrasives, in cutting and polishing tools and in heat sinks. Electronic applications of synthetic diamond are being developed, including high-power switches at power stations, high-frequency field-effect transistors and light-emitting diodes. Synthetic diamond detectors of ultraviolet (UV) light or high-energy particles are used at high-energy research facilities and are available commercially. Because of its unique combination of thermal and chemical stability, low thermal expansion and high optical transparency in a wide spectral range, synthetic diamond is becoming the most popular material for optical windows in high-power CO2 lasers and gyrotrons. It is estimated that 98% of industrial grade diamond demand is supplied with synthetic diamonds.[2]
In the United States, the Federal Trade Commission has indicated that the terms laboratory-grown, laboratory-created, and [manufacturer-name]-created "would more clearly communicate the nature of the stone".[1] Both CVD and HPHT diamonds can be cut into gems and various colors can be produced: clear white, yellow, brown, blue, green and orange. The advent of synthetic gems on the market created major concerns in the diamond trading business, as a result of which special spectroscopic devices and techniques have been developed to distinguish synthetic and natural diamonds.
Additional Information:
Product Details:
Minimum Order Quantity | 1000 Piece |
Size | 1mm To 10mm |
Grade | yes |
Technique | synthetic |
Treated | yes |
Weight | all |
Brand | a n gems |
Packaging Type | all |
Usage/Application | jewewllery |
Country of Origin | Made in India |
Synthetic diamond (also referred to as laboratory-grown diamond, laboratory-created diamond, or cultured diamond) is a diamond made of the same material as natural diamondspure carbon, crystallized in an isotropic 3D form.[1]
Synthetic diamond are different from natural diamond created by geological processes and imitation diamond made of non-diamond material. Numerous claims of diamond synthesis were documented between 1879 and 1928; most of those attempts were carefully analyzed but none were confirmed. In the 1940s, systematic research began in the United States, Sweden and the Soviet Union to grow diamonds using CVD diamond (chemical vapor deposition) and HPHT diamond (high-pressure high-temperature) processes. The first reproducible synthesis was reported around 1955. Those two processes still dominate the production of synthetic diamond. A third method, known as detonation synthesis, entered the diamond market in the late 1990s. In this process, nanometer-sized diamond grains are created in a detonation of carbon-containing explosives. A fourth method, treating graphite with high-power ultrasound, has been demonstrated in the laboratory, but currently has no commercial application.
The properties of synthetic diamond depend on the details of the manufacturing processes; however, some synthetic diamonds (whether formed by HPHT or CVD) have properties such as hardness, thermal conductivity and electron mobility that are superior to those of most naturally formed diamonds. Synthetic diamond is widely used in abrasives, in cutting and polishing tools and in heat sinks. Electronic applications of synthetic diamond are being developed, including high-power switches at power stations, high-frequency field-effect transistors and light-emitting diodes. Synthetic diamond detectors of ultraviolet (UV) light or high-energy particles are used at high-energy research facilities and are available commercially. Because of its unique combination of thermal and chemical stability, low thermal expansion and high optical transparency in a wide spectral range, synthetic diamond is becoming the most popular material for optical windows in high-power CO2 lasers and gyrotrons. It is estimated that 98% of industrial grade diamond demand is supplied with synthetic diamonds.[2]
Additional Information:
Product Details:
Minimum Order Quantity | 1000 Piece |
Size | 1mm To 20mm |
Grade | AAAAA |
Technique | all |
Treated | yes |
Weight | 1 to 100cts |
Brand | a n gems |
Packaging Type | all |
Usage/Application | jewewllery |
Country of Origin | Made in India |
Synthetic diamond are different from natural diamond created by geological processes and imitation diamond made of non-diamond material. Numerous claims of diamond synthesis were documented between 1879 and 1928; most of those attempts were carefully analyzed but none were confirmed. In the 1940s, systematic research began in the United States, Sweden and the Soviet Union to grow diamonds using CVD diamond (chemical vapor deposition) and HPHT diamond (high-pressure high-temperature) processes. The first reproducible synthesis was reported around 1955. Those two processes still dominate the production of synthetic diamond. A third method, known as detonation synthesis, entered the diamond market in the late 1990s. In this process, nanometer-sized diamond grains are created in a detonation of carbon-containing explosives. A fourth method, treating graphite with high-power ultrasound, has been demonstrated in the laboratory, but currently has no commercial application.
The properties of synthetic diamond depend on the details of the manufacturing processes; however, some synthetic diamonds (whether formed by HPHT or CVD) have properties such as hardness, thermal conductivity and electron mobility that are superior to those of most naturally formed diamonds. Synthetic diamond is widely used in abrasives, in cutting and polishing tools and in heat sinks. Electronic applications of synthetic diamond are being developed, including high-power switches at power stations, high-frequency field-effect transistors and light-emitting diodes. Synthetic diamond detectors of ultraviolet (UV) light or high-energy particles are used at high-energy research facilities and are available commercially. Because of its unique combination of thermal and chemical stability, low thermal expansion and high optical transparency in a wide spectral range, synthetic diamond is becoming the most popular material for optical windows in high-power CO2 lasers and gyrotrons. It is estimated that 98% of industrial grade diamond demand is supplied with synthetic diamonds.[2]
In the United States, the Federal Trade Commission has indicated that the terms laboratory-grown, laboratory-created, and [manufacturer-name]-created "would more clearly communicate the nature of the stone".[1] Both CVD and HPHT diamonds can be cut into gems and various colors can be produced: clear white, yellow, brown, blue, green and orange. The advent of synthetic gems on the market created major concerns in the diamond trading business, as a result of which special spectroscopic devices and techniques have been developed to distinguish synthetic and natural diamonds
Additional Information:
Product Details:
Minimum Order Quantity | 1000 Piece |
Size | 1mm To 20mm |
Grade | AAAAA |
Technique | all |
Treated | yes |
Weight | 1 to 100cts |
Brand | a n gems |
Packaging Type | all |
Usage/Application | jewewllery |
Country of Origin | Made in India |
Synthetic diamond are different from natural diamond created by geological processes and imitation diamond made of non-diamond material. Numerous claims of diamond synthesis were documented between 1879 and 1928; most of those attempts were carefully analyzed but none were confirmed. In the 1940s, systematic research began in the United States, Sweden and the Soviet Union to grow diamonds using CVD diamond (chemical vapor deposition) and HPHT diamond (high-pressure high-temperature) processes. The first reproducible synthesis was reported around 1955. Those two processes still dominate the production of synthetic diamond. A third method, known as detonation synthesis, entered the diamond market in the late 1990s. In this process, nanometer-sized diamond grains are created in a detonation of carbon-containing explosives. A fourth method, treating graphite with high-power ultrasound, has been demonstrated in the laboratory, but currently has no commercial application.
The properties of synthetic diamond depend on the details of the manufacturing processes; however, some synthetic diamonds (whether formed by HPHT or CVD) have properties such as hardness, thermal conductivity and electron mobility that are superior to those of most naturally formed diamonds. Synthetic diamond is widely used in abrasives, in cutting and polishing tools and in heat sinks. Electronic applications of synthetic diamond are being developed, including high-power switches at power stations, high-frequency field-effect transistors and light-emitting diodes. Synthetic diamond detectors of ultraviolet (UV) light or high-energy particles are used at high-energy research facilities and are available commercially. Because of its unique combination of thermal and chemical stability, low thermal expansion and high optical transparency in a wide spectral range, synthetic diamond is becoming the most popular material for optical windows in high-power CO2 lasers and gyrotrons. It is estimated that 98% of industrial grade diamond demand is supplied with synthetic diamonds.[2]
In the United States, the Federal Trade Commission has indicated that the terms laboratory-grown, laboratory-created, and [manufacturer-name]-created "would more clearly communicate the nature of the stone".[1] Both CVD and HPHT diamonds can be cut into gems and various colors can be produced: clear white, yellow, brown, blue, green and orange. The advent of synthetic gems on the market created major concerns in the diamond trading business, as a result of which special spectroscopic devices and techniques have been developed to distinguish synthetic and natural diamonds
Additional Information:
Product Details:
Minimum Order Quantity | 1000 Piece |
Size | 1mm to 20 mm |
Grade | AAAAA |
Technique | all |
Treated | yes |
Weight | 1 to 100cts |
Brand | a n gems |
Shape | octogan |
Packaging Type | all |
Packaging Size | all |
Usage/Application | jewewllery |
Machine Cut Round | yes |
Design | octogan |
Country of Origin | Made in India |
Synthetic diamond are different from natural diamond created by geological processes and imitation diamond made of non-diamond material. Numerous claims of diamond synthesis were documented between 1879 and 1928; most of those attempts were carefully analyzed but none were confirmed. In the 1940s, systematic research began in the United States, Sweden and the Soviet Union to grow diamonds using CVD diamond (chemical vapor deposition) and HPHT diamond (high-pressure high-temperature) processes. The first reproducible synthesis was reported around 1955. Those two processes still dominate the production of synthetic diamond. A third method, known as detonation synthesis, entered the diamond market in the late 1990s. In this process, nanometer-sized diamond grains are created in a detonation of carbon-containing explosives. A fourth method, treating graphite with high-power ultrasound, has been demonstrated in the laboratory, but currently has no commercial application.
The properties of synthetic diamond depend on the details of the manufacturing processes; however, some synthetic diamonds (whether formed by HPHT or CVD) have properties such as hardness, thermal conductivity and electron mobility that are superior to those of most naturally formed diamonds. Synthetic diamond is widely used in abrasives, in cutting and polishing tools and in heat sinks. Electronic applications of synthetic diamond are being developed, including high-power switches at power stations, high-frequency field-effect transistors and light-emitting diodes. Synthetic diamond detectors of ultraviolet (UV) light or high-energy particles are used at high-energy research facilities and are available commercially. Because of its unique combination of thermal and chemical stability, low thermal expansion and high optical transparency in a wide spectral range, synthetic diamond is becoming the most popular material for optical windows in high-power CO2 lasers and gyrotrons. It is estimated that 98% of industrial grade diamond demand is supplied with synthetic diamonds.[2]
In the United States, the Federal Trade Commission has indicated that the terms laboratory-grown, laboratory-created, and [manufacturer-name]-created "would more clearly communicate the nature of the stone".[1] Both CVD and HPHT diamonds can be cut into gems and various colors can be produced: clear white, yellow, brown, blue, green and orange. The advent of synthetic gems on the market created major concerns in the diamond trading business, as a result of which special spectroscopic devices and techniques have been developed to distinguish synthetic and natural diamonds
Additional Information:
Product Details:
Minimum Order Quantity | 1000 Piece |
Size | 1 mm To 20 mm |
Grade | AAAAA |
Technique | all |
Treated | yes |
Weight | 1 to 100cts |
Brand | a n gems |
Packaging Type | all |
Usage/Application | jewewllery |
Country of Origin | Made in India |
Synthetic diamond are different from natural diamond created by geological processes and imitation diamond made of non-diamond material. Numerous claims of diamond synthesis were documented between 1879 and 1928; most of those attempts were carefully analyzed but none were confirmed. In the 1940s, systematic research began in the United States, Sweden and the Soviet Union to grow diamonds using CVD diamond (chemical vapor deposition) and HPHT diamond (high-pressure high-temperature) processes. The first reproducible synthesis was reported around 1955. Those two processes still dominate the production of synthetic diamond. A third method, known as detonation synthesis, entered the diamond market in the late 1990s. In this process, nanometer-sized diamond grains are created in a detonation of carbon-containing explosives. A fourth method, treating graphite with high-power ultrasound, has been demonstrated in the laboratory, but currently has no commercial application.
The properties of synthetic diamond depend on the details of the manufacturing processes; however, some synthetic diamonds (whether formed by HPHT or CVD) have properties such as hardness, thermal conductivity and electron mobility that are superior to those of most naturally formed diamonds. Synthetic diamond is widely used in abrasives, in cutting and polishing tools and in heat sinks. Electronic applications of synthetic diamond are being developed, including high-power switches at power stations, high-frequency field-effect transistors and light-emitting diodes. Synthetic diamond detectors of ultraviolet (UV) light or high-energy particles are used at high-energy research facilities and are available commercially. Because of its unique combination of thermal and chemical stability, low thermal expansion and high optical transparency in a wide spectral range, synthetic diamond is becoming the most popular material for optical windows in high-power CO2 lasers and gyrotrons. It is estimated that 98% of industrial grade diamond demand is supplied with synthetic diamonds.[2]
In the United States, the Federal Trade Commission has indicated that the terms laboratory-grown, laboratory-created, and [manufacturer-name]-created "would more clearly communicate the nature of the stone".[1] Both CVD and HPHT diamonds can be cut into gems and various colors can be produced: clear white, yellow, brown, blue, green and orange. The advent of synthetic gems on the market created major concerns in the diamond trading business, as a result of which special spectroscopic devices and techniques have been developed to distinguish synthetic and natural diamo
Additional Information:
Product Details:
Minimum Order Quantity | 1000 Piece |
Size | 1 mm To 20 mm |
Grade | AAAAA |
Technique | all |
Treated | yes |
Weight | 1 to 100cts |
Brand | a n gems |
Packaging Type | all |
Usage/Application | jewewllery |
Country of Origin | Made in India |
Synthetic diamond are different from natural diamond created by geological processes and imitation diamond made of non-diamond material. Numerous claims of diamond synthesis were documented between 1879 and 1928; most of those attempts were carefully analyzed but none were confirmed. In the 1940s, systematic research began in the United States, Sweden and the Soviet Union to grow diamonds using CVD diamond (chemical vapor deposition) and HPHT diamond (high-pressure high-temperature) processes. The first reproducible synthesis was reported around 1955. Those two processes still dominate the production of synthetic diamond. A third method, known as detonation synthesis, entered the diamond market in the late 1990s. In this process, nanometer-sized diamond grains are created in a detonation of carbon-containing explosives. A fourth method, treating graphite with high-power ultrasound, has been demonstrated in the laboratory, but currently has no commercial application.
The properties of synthetic diamond depend on the details of the manufacturing processes; however, some synthetic diamonds (whether formed by HPHT or CVD) have properties such as hardness, thermal conductivity and electron mobility that are superior to those of most naturally formed diamonds. Synthetic diamond is widely used in abrasives, in cutting and polishing tools and in heat sinks. Electronic applications of synthetic diamond are being developed, including high-power switches at power stations, high-frequency field-effect transistors and light-emitting diodes. Synthetic diamond detectors of ultraviolet (UV) light or high-energy particles are used at high-energy research facilities and are available commercially. Because of its unique combination of thermal and chemical stability, low thermal expansion and high optical transparency in a wide spectral range, synthetic diamond is becoming the most popular material for optical windows in high-power CO2 lasers and gyrotrons. It is estimated that 98% of industrial grade diamond demand is supplied with synthetic diamonds.[2]
In the United States, the Federal Trade Commission has indicated that the terms laboratory-grown, laboratory-created, and [manufacturer-name]-created "would more clearly communicate the nature of the stone".[1] Both CVD and HPHT diamonds can be cut into gems and various colors can be produced: clear white, yellow, brown, blue, green and orange. The advent of synthetic gems on the market created major concerns in the diamond trading business, as a result of which special spectroscopic devices and techniques have been developed to distinguish synthetic and natural diamo
Additional Information:
Product Details:
Minimum Order Quantity | 1000 Piece |
Size | 1 mm To 20 mm |
Grade | AAAAA |
Technique | all |
Treated | yes |
Weight | 1 to 100cts |
Brand | a n gems |
Packaging Type | all |
Usage/Application | jewewllery |
Country of Origin | Made in India |
Synthetic diamond are different from natural diamond created by geological processes and imitation diamond made of non-diamond material. Numerous claims of diamond synthesis were documented between 1879 and 1928; most of those attempts were carefully analyzed but none were confirmed. In the 1940s, systematic research began in the United States, Sweden and the Soviet Union to grow diamonds using CVD diamond (chemical vapor deposition) and HPHT diamond (high-pressure high-temperature) processes. The first reproducible synthesis was reported around 1955. Those two processes still dominate the production of synthetic diamond. A third method, known as detonation synthesis, entered the diamond market in the late 1990s. In this process, nanometer-sized diamond grains are created in a detonation of carbon-containing explosives. A fourth method, treating graphite with high-power ultrasound, has been demonstrated in the laboratory, but currently has no commercial application.
The properties of synthetic diamond depend on the details of the manufacturing processes; however, some synthetic diamonds (whether formed by HPHT or CVD) have properties such as hardness, thermal conductivity and electron mobility that are superior to those of most naturally formed diamonds. Synthetic diamond is widely used in abrasives, in cutting and polishing tools and in heat sinks. Electronic applications of synthetic diamond are being developed, including high-power switches at power stations, high-frequency field-effect transistors and light-emitting diodes. Synthetic diamond detectors of ultraviolet (UV) light or high-energy particles are used at high-energy research facilities and are available commercially. Because of its unique combination of thermal and chemical stability, low thermal expansion and high optical transparency in a wide spectral range, synthetic diamond is becoming the most popular material for optical windows in high-power CO2 lasers and gyrotrons. It is estimated that 98% of industrial grade diamond demand is supplied with synthetic diamonds.[2]
In the United States, the Federal Trade Commission has indicated that the terms laboratory-grown, laboratory-created, and [manufacturer-name]-created "would more clearly communicate the nature of the stone".[1] Both CVD and HPHT diamonds can be cut into gems and various colors can be produced: clear white, yellow, brown, blue, green and orange. The advent of synthetic gems on the market created major concerns in the diamond trading business, as a result of which special spectroscopic devices and techniques have been developed to distinguish synthetic and natural diamo
Additional Information:
Product Details:
Minimum Order Quantity | 1000 Piece |
Size | 1mm To 20mmm |
Grade | AAAAA |
Technique | all |
Treated | yes |
Weight | 1 to 100cts |
Brand | a n gems |
Packaging Type | all |
Usage/Application | jewewllery |
Country of Origin | Made in India |
Synthetic diamond (also referred to as laboratory-grown diamond, laboratory-created diamond, or cultured diamond) is a diamond made of the same material as natural diamondspure carbon, crystallized in an isotropic 3D form.
Synthetic diamond are different from natural diamond created by geological processes and imitation diamond made of non-diamond material. Numerous claims of diamond synthesis were documented between 1879 and 1928; most of those attempts were carefully analyzed but none were confirmed. In the 1940s, systematic research began in the United States, Sweden and the Soviet Union to grow diamonds using CVD diamond (chemical vapor deposition) and HPHT diamond (high-pressure high-temperature) processes. The first reproducible synthesis was reported around 1955. Those two processes still dominate the production of synthetic diamond. A third method, known as detonation synthesis, entered the diamond market in the late 1990s. In this process, nanometer-sized diamond grains are created in a detonation of carbon-containing explosives. A fourth method, treating graphite with high-power ultrasound, has been demonstrated in the laboratory, but currently has no commercial application.
The properties of synthetic diamond depend on the details of the manufacturing processes; however, some synthetic diamonds (whether formed by HPHT or CVD) have properties such as hardness, thermal conductivity and electron mobility that are superior to those of most naturally formed diamonds. Synthetic diamond is widely used in abrasives, in cutting and polishing tools and in heat sinks. Electronic applications of synthetic diamond are being developed, including high-power switches at power stations, high-frequency field-effect transistors and light-emitting diodes. Synthetic diamond detectors of ultraviolet (UV) light or high-energy particles are used at high-energy research facilities and are available commercially. Because of its unique combination of thermal and chemical stability, low thermal expansion and high optical transparency in a wide spectral range, synthetic diamond is becoming the most popular material for optical windows in high-power CO2 lasers and gyrotrons. It is estimated that 98% of industrial grade diamond demand is supplied with synthetic diamonds.[2]
In the United States, the Federal Trade Commission has indicated that the terms laboratory-grown, laboratory-created, and [manufacturer-name]-created "would more clearly communicate the nature of the stone".[1] Both CVD and HPHT diamonds can be cut into gems and various colors can be produced: clear white, yellow, brown, blue, green and orange. The advent of synthetic gems on the market created major concerns in the diamond trading business, as a result of which special spectroscopic devices and techniques have been developed to
Additional Information:
Product Details:
Minimum Order Quantity | 1000 Piece |
Size | 1mm To 20mm |
Grade | AAAAA |
Technique | all |
Treated | yes |
Weight | 1 to 100cts |
Brand | a n gems |
Packaging Type | all |
Usage/Application | jewewllery |
Country of Origin | Made in India |
Synthetic diamond (also referred to as laboratory-grown diamond, laboratory-created diamond, or cultured diamond) is a diamond made of the same material as natural diamonds pure carbon, crystallized in an isotropic 3D form.
Synthetic diamond are different from natural diamond created by geological processes and imitation diamond made of non-diamond material. Numerous claims of diamond synthesis were documented between 1879 and 1928; most of those attempts were carefully analyzed but none were confirmed. In the 1940s, systematic research began in the United States, Sweden and the Soviet Union to grow diamonds using CVD diamond (chemical vapor deposition) and HPHT diamond (high-pressure high-temperature) processes. The first reproducible synthesis was reported around 1955. Those two processes still dominate the production of synthetic diamond. A third method, known as detonation synthesis, entered the diamond market in the late 1990s. In this process, nanometer-sized diamond grains are created in a detonation of carbon-containing explosives. A fourth method, treating graphite with high-power ultrasound, has been demonstrated in the laboratory, but currently has no commercial application.
The properties of synthetic diamond depend on the details of the manufacturing processes; however, some synthetic diamonds (whether formed by HPHT or CVD) have properties such as hardness, thermal conductivity and electron mobility that are superior to those of most naturally formed diamonds. Synthetic diamond is widely used in abrasives, in cutting and polishing tools and in heat sinks. Electronic applications of synthetic diamond are being developed, including high-power switches at power stations, high-frequency field-effect transistors and light-emitting diodes. Synthetic diamond detectors of ultraviolet (UV) light or high-energy particles are used at high-energy research facilities and are available commercially. Because of its unique combination of thermal and chemical stability, low thermal expansion and high optical transparency in a wide spectral range, synthetic diamond is becoming the most popular material for optical windows in high-power CO2 lasers and gyrotrons. It is estimated that 98% of industrial grade diamond demand is supplied with synthetic diamonds.[2]
In the United States, the Federal Trade Commission has indicated that the terms laboratory-grown, laboratory-created, and [manufacturer-name]-created "would more clearly communicate the nature of the stone".[1] Both CVD and HPHT diamonds can be cut into gems and various colors can be produced: clear white, yellow, brown, blue, green and orange. The advent of synthetic gems on the market created major concerns in the diamond trading business, as a result of which special spectroscopic devices and techniques have been developed to
Additional Information: